반응형 Multi-head-Attention1 [We-Co] Transformer - Tensorflow, NLP 안녕하세요. 위기의 코딩맨입니다. 오늘은 Transformer에 대해서 간단하게 알아보도록 하겠습니다 [ Transformer ] "Attention is all you need"의 제목으로 2017년 구글에서 발표한 모델입니다. 기존의 Seq2Seq의 구조 인코더 - 디코더를 기반으로 하지만, RNN모델을 사용하지 않고 Ateention의 기법을 사용하여 우수한 성능을 보여주는 모델입니다. Transformer의 장점은 - RNN은 순차적의 형태로 출력하지만, 병렬적으로 계산이 가능 - Rnn 스텝이나 Convolution을 켜지 않고 멀리 떨어진 텍스트의 정보들도 서로 영향을 주고 받으며 서로 연관관계를 학습이 가능 Seq2Seq와 같이 왼쪽은 Encoding부분, 오른쪽은 Decoding부분으로 나.. 2022. 2. 6. 이전 1 다음 반응형